With support from the University of Richmond

History News Network

History News Network puts current events into historical perspective. Subscribe to our newsletter for new perspectives on the ways history continues to resonate in the present. Explore our archive of thousands of original op-eds and curated stories from around the web. Join us to learn more about the past, now.

Scientists and humanists join forces to use X-ray technology to shed new light on ancient stone inscriptions

In an unusual collaboration among scientists and humanists, a Cornell University team has demonstrated a novel method for recovering faded text on ancient stone by zapping and mapping 2,000-year-old inscriptions using X-ray fluorescence (XRF) imaging.

The research, carried out at the Cornell High Energy Synchrotron Source (CHESS), applies a nondestructive chemical analysis technique widely used in geology, archaeology and materials science.

"X-ray fluorescence imaging has the potential to become a major tool in epigraphy [the study of incised writing on various surfaces, including stone]," said Robert Thorne, professor of physics and co-author of an article in a German journal titled "Recovering Ancient Inscriptions by X-ray Fluorescence Imaging." "It's just so much more powerful than anything that's been used in the past."

The article describes the first successful application of XRF imaging to the study of ancient stone inscriptions between 1,800 and 2,400 years old. It will be published in August in Zeitschrift fur Papyrologie und Epigraphik (journal for papyrology and epigraphy) , one of the world's leading journals on ancient texts. The discovery could herald an important breakthrough in the study of ancient cultures.

"Inscribed texts are of considerable interest to the linguist and philologist," said Kevin Clinton, Cornell professor of classics, a co-author of the article. "Because of the information contained in them, they are invaluable sources for the historian, archaeologist, art historian and every student of institutions and life in the ancient world."

The findings result from a multidisciplinary effort among Cornell's faculty and graduate students in the departments of Physics, Applied Physics and Classics, as well as members of CHESS -- where the XRF imaging experiments were conducted.

"A synchrotron is a high-intensity X-ray machine," said Donald Bilderback, associate director of CHESS and a Cornell applied physics professor, also a co-author. "It's over a million times more intense than the tube X-ray sources used in medical imaging and in standard XRF analysis."

Read more here and here.