If a Biotech Firm Can Revive the Woolly Mammoth, There's No Law Stopping Them
“How much would you pay to see a woolly mammoth?” asked a recent headline in the MIT Technology Review. Colossal Biosciences, which calls itself the world’s first de-extinction company, intends to make that more than a hypothetical. At its founding last year, Colossal generated a thunderclap of publicity for its announced goal of creating mammoths in its labs and releasing them in a park in Siberia. Media coverage offered an inspiring image of the tusked giants, who weighed up to 10 tons, once again trampling across the snowy earth.
But there was a problem—and no, not just the technical hurdle of restoring extinct species via biotechnology. The region of Siberia Colossal had in mind, Sakha, has a thriving underground trade in mammoth tusks. Specimens preserved in ice and riverbeds can be passed off as elephant ivory: One find can generate enough income for a hunter to feed his family for a year. So George Church, a Harvard geneticist and co-founder of Colossal, told CNN that in order to avoid its creations being poached, Colossal was considering bringing them back without tusks.
Mammoths without their iconic body part symbolize a crucial fact about de-extinction: Any scientific breakthrough like this will be subject to political and economic considerations as well. Indeed, Colossal’s other co-founder, entrepreneur Ben Lamm, now says Russia’s invasion of Ukraine has caused it to pause its Siberian plan and begin investigating locations in Alaska instead.
Wherever newly revived animals might end up—and the woolly mammoth isn’t the only animal on Colossal’s agenda—it’s increasingly apparent that de-extinction projects require a legal framework. Currently it’s unclear whether the patchwork of laws in various countries on genome editing, animal use, and other topics amount to much regulation of de-extinction at all. But whether to bring back extinct species should ultimately be up to governments, not private firms such as Colossal.
Interest in Colossal and de-extinction more broadly reflect our increasing ability to reengineer other species. In 2000 the bucardo, a wild goat native to France and Spain, went extinct. Three years later, a team that included scientists from Advanced Cell Technology, a U.S. firm, used cells taken from the last living bucardo to create embryos that were inserted in surrogate goat and goat-bucardo mothers. Of the seven pregnancies that ensued, one resulted in a live birth. The animal lived for several minutes, during which de-extinction was briefly a reality.